MicroRNA-181 Regulates CARM1 and Histone Aginine Methylation to Promote Differentiation of Human Embryonic Stem Cells

نویسندگان

  • Zhenyu Xu
  • Junfeng Jiang
  • Chen Xu
  • Yue Wang
  • Lei Sun
  • Xiaocan Guo
  • Houqi Liu
چکیده

As a novel epigenetic mechanism, histone H3 methylation at R17 and R26, which is mainly catalyzed by coactivator-associated protein arginine methyltransferase 1 (CARM1), has been reported to modulate the transcription of key pluripotency factors and to regulate pluripotency in mouse embryos and mouse embryonic stem cells (mESCs) in previous studies. However, the role of CARM1 in human embryonic stem cells (hESCs) and the regulatory mechanism that controls CARM1 expression during ESCs differentiation are presently unknown. Here, we demonstrate that CARM1 plays an active role in the resistance to differentiation in hESCs by regulating pluripotency genes in response to BMP4. In a functional screen, we identified the miR-181 family as a regulator of CARM1 that is induced during ESC differentiation and show that endogenous miR-181c represses the expression of CARM1. Depletion of CARM1 or enforced expression of miR-181c inhibits the expression of pluripotency genes and induces differentiation independent of BMP4, whereas overexpression of CARM1 or miR-181c inhibitor elevates Nanog and impedes differentiation. Furthermore, expression of CARM1 rescue constructs inhibits the effect of miR-181c overexpression in promoting differentiation. Taken together, our findings demonstrate the importance of a miR-181c-CARM1 pathway in regulating the differentiation of hESCs.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

CARM1 is required in embryonic stem cells to maintain pluripotency and resist differentiation.

Histone H3 methylation at R17 and R26 recently emerged as a novel epigenetic mechanism regulating pluripotency in mouse embryos. Blastomeres of four-cell embryos with high H3 methylation at these sites show unrestricted potential, whereas those with lower levels cannot support development when aggregated in chimeras of like cells. Increasing histone H3 methylation, through expression of coactiv...

متن کامل

CARM1 regulates astroglial lineage through transcriptional regulation of Nanog and posttranscriptional regulation by miR92a

Coactivator-associated arginine methyltransferase (CARM1/PRMT4)-mediated transcriptional coactivation and arginine methylation is known to regulate various tissue-specific differentiation events. Although CARM1 is expressed in the neural crest region in early development, coinciding with early neuronal progenitor specification, the role of CARM1 in any neuronal developmental pathways has been u...

متن کامل

Promoter Methylation and Gene Expression in Human CD34+ Stem Cells Derived Erythroid Lineage by MicroRNA

Background: Stem Cell differentiation is a process composed of vast variety of factors which are controlled by a network of certain mechanisms. This study aims to determine the possible role of DNA methylation, a potent regulator of VHL, ECAD and RUNX3 genes during Erythroid differentiation driven by miR-451. Materials and Methods: To determine the methylation status of promoters and the e...

متن کامل

P-88: Comparing Epigenetic Profile of Oct4 Regulatory Region in Embryonal Carcinoma Cells under Retinoic Acid Induction

Background: Embryonal carcinoma (EC) cells derived from germ cell tumors are valuable tools for investigating differentiation and developmental biology processes in vitro. The advantage of the reproducible and rapid expansion of these cell lines provides a useful alternative to embryos for the study of mammalian cell differentiation. During early stages of cell differentiation, the rate of tran...

متن کامل

Regulation of Pluripotency-related Genes and Differentiation in Mouse Embryonic Stem Cells by Direct Delivery of Cell-penetrating Peptide-conjugated CARM1 Recombinant Protein

Coactivator-associated arginine methyltransferase 1 (CARM1) is included in the protein arginine methyltransferase (PRMT) family, which methylates histone arginine residues through posttranslational modification. It has been proposed that CARM1 may up-regulate the expression of pluripotency-related genes through the alteration of the chromatin structure. Mouse embryonic stem cells (mESCs) are pl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2013